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Abstract. In this work, a brief review of a new form of scalar-tensor theories of gravity, known
as gravitational scalar-tensor theories in which the action is composed of the Ricci scalar and its
first and second derivatives is made. Some of the cosmological applications in these new theories
are discussed considering different models corresponding to the first non-trivial extensions of
general relativity possessing 2 + 2 degrees of freedom. We show that the resulting cosmological
behavior is in agreement with observations.

1. Introduction
Despite the success of the standard cosmological model based on the theory of General Relativity
(GR), the recent developments in observational cosmology and astronomy led to the statement
that this model is inadequate to explain many phenomena in the Universe [1]. The Universe has
experienced two phases of cosmic acceleration. The first one is the inflation phase which is an
early-time accelerated phase and it is believed to have happened a fraction of second after the Big
Bang and prior to the radiation-dominated epoch. The second phase is the accelerated expansion
in the present universe which is considered to have started since the Universe entered its dark-
energy-dominated epoch [2]. The two phases of accelerated expansion are very challenging
however, there are recent attempts and alternatives to the standard Big Bang model proposed
to explain these phenomena. Some of those attempts are within the framework of GR and
some focused on the possibility of modifying GR, by modifying the gravitational sector of the
theory. Extending the work done in [3], this particular piece of literature is aimed at studying
a new form of scalar-tensor theories of gravity, known as gravitational scalar-tensor theories.
There has been some recent work on the scalar-tensor theories of gravity on how to construct a
gravitational modification without presenting ghosts behavior or any instabilities which normally
arise due to the extra degrees of freedom introduced in such modification. In 1974, Horndeski [4]
was able to construct the single-scalar field theory with second-order equations of motion with
respect to the scalar field and the metric which involves 2 + 1 propagating degrees of freedom,
and thus without ghosts. This theory is further extended as in [5–10] with the same 2 + 1
propagating degrees of freedom. In [11], the authors managed to construct a gravitational
modification namely gravitational scalar-tensor theories, which possess 2 + 2 degrees of freedom
that propagate without introducing ghost nor Ostrogradski instabilities [12] under a specific
choice of the Lagrangian. They considered a theory of gravity with an action that is composed
of the Ricci scalar and its first and second derivatives. [3, 11]

S =
1

2

∫
d4x
√
−gf

(
R, (∇R)2,�R

)
, (1)

where �R = gab∇a∇bR. The action of these theories can be transformed to an action of
multi-scalar fields coupled to gravity, by using double Lagrangian multipliers. E.g., if we have
f(R) and f(φ), we introduce a new variable λ called a Lagrangian multiplier and it is defined
L(R,φ, λ) = f(φ) − λ(φ − R), so in case of f(R, (∇R)2,�R), we introduce a set of Lagrange
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multipliers (λ̃, Λ̃1, Λ̃2) and the associated auxiliary fields (φ,X,B) in order to reduce the order
of derivatives [3]:

λ̃f(R, (∇R)2,�R) = f(φ,X,B)− (φ−R)− Λ̃1(X − (∇R)2)− Λ̃2(B −�R) , (2)

where

λ̃ Λ̃= λ+∇ρ[ 1∇ρ(φ+R)]−�Λ̃2 , Λ̃1 = Λ1 , Λ̃2 = Λ2 . (3)

By using Eq. (2) and Eq. (3) and by replacing all the derivatives of R with the derivatives of
φ, one can rewrite the action in Eq. (1) as follows [11]

S =

∫
d4x
√
−g
[
f(φ,X,B)− λ(φ−R)− Λ1(X − (∇φ)2)− Λ2(B −�φ)

]
. (4)

This action does not involve any derivative terms of those two variables Λ1 and Λ2 which
implies that the variation of the action with respect to these two variables results in constraint
equations [11]. Therefore, the action in Eq. (4) can be written as

S =

∫
d4x
√
−g
[
f(φ, (∇φ)2,�φ)− λ(φ−R)

]
. (5)

This action has derivative terms of φ, which implies a dynamical equation of φ. Since the
higher derivatives terms except for λR come from �φ, therefore λ is also treated as a dynamical
field. In order to reduce the order of derivatives, in [11], another Lagrangian multiplier and the
associated auxiliary field have been introduced for �φ as

(6)f(�φ) = f(B)− Λ(B −�φ) ,

therefore, the action in Eq. (5) is now written as

S =

∫
d4x
√
−g
[
f(φ, (∇φ)2, B)− λ(φ−R)− Λ(B −�φ)

]
. (7)

By varying this action with respect to B, given that this action is independent of the derivative
of B [11], therefore we have

δS =

∫
d4x
√
−g[fB − Λ] . (8)

Since the action is independent of the derivative of B, δS yields a constraint equation, fB = Λ,
where fB denotes partial derivative of f with respect to B. By replacing this constraint back
into the action in Eq. (7), and by varying the action with respect to B, the resulting action is

δS =

∫
d4x
√
−g[−fBB(B −�φ)] . (9)

1- If fBB = 0, B does not enter√ linearly in the Lagrangian and under a conformal

transformation where gab = 1
2e
− 2

3
X
ĝab, the action of the new gravitational scalar-tensor

is given as [3]

S =

∫
d4x
√
−ĝ
[1

2
R̂− 1

2
ĝab
(
∂aX∂bX + e

−
√

2
3
X
∂aϕ∂bφ

)
−1

4

(
e
−
√

2
3
X
φ+ e

−2
√

2
3
X
(

∇ϕB(φ, ( ˆφ)2, ϕ)− f
))]

. (10)

2- If fBB = 0, B enters linearly in the Lagrangian, and the function f can be rewritten as

f
(
R, (∇R)2,�R

)
= K

(
R, (∇R)2

)
+ G

(
R, (∇R)2

)
�R . (11)
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The action of the new gravitational scalar-tensor is given by [3, 11]

S =

∫
d4x
√
−ĝ
[1

2
R̂− 1

2
ĝab∂aX∂bX − √

1

6
e
−
√

2
3
X
ĝabG∂aX∂bφ

+
1

4
e
−2

√
2
3
XK +

1

2
e
−
√

2
3
XG�̂φ− 1

4
e
−
√

2
3
X
φ
)]

, (12)

where

K = K(φ,B) , G = G(φ,B) , B = 2e

√
2
3
X
gab∂aφ∂bφ . (13)

As shown in [11], despite the higher derivative nature of the Lagrangian, this new theory does
not introduce any ghost under an appropriate choice of the Lagrangian.

2. Field equations in the gravitational scalar-tensor theories
In [3], the authors investigated the cosmological behavior in gravitational scalar-tensor theories
to study the late-time evolution of a universe governed by these theories. They introduced the
action of the matter sector Sm, and considered a homogeneous and isotropic geometry in the
Einstein framework such that the total action is S = S + Sm. We consider the following flat
Friedmann-Lemâıtre-Robertson-Walker (FLRW) spacetime metric where the two scalar fields
are time-dependent only:

ds2 = −dt2 + a(t)2δijdx
idxj . (14)

Therefore, the Friedmann equations and the evolution equations are given as [3],

3H2 − ρm −
1

2
Ẋ 2 +

1

4
e
−2

√
2
3
XK +

2

3
φ̇2 φ̇
( (√

6Ẋ − 9H
)
− 3φ̈

)
GB

−1

2
e
−
√

2
3
X
(
Ḃφ̇GB +

1

2
φ+ φ̇2

(
Gφ − 2KB

))
= 0 , (15)

1

2
Ẋ 2 +

1

4
e
−2

√
2
3
XK +

1

2
e
−
√

2
3
X
(
Ḃφ̇GB −

1

2
φ+ φ̇2Gφ

)
= 0 , (16)

˙

3H2 + 2Ḣ + pm +

εX = Ẍ + 3HX − 1

3
φ̇2 φ̇
( (

3
√

6H − 2Ẋ
)

+
√

6φ̈
)
GB

+
1

2
√

6
e
−
√

2
3
X
(

2Ḃφ̇ φ̇GB − φ+ 2 2
(
KB + Gφ

))
+

1√{6e
−2

√
2
3
XK = 0 , (17)

εφ =
1

3
e
−
√

2
3
X
φ̇
( (
− 9H +

√
6Ẋ
)
− 3φ̈

)
KB +

1

6
Ḃ 3e

−
√

2
3
X
Ḃ + 4φ̇

(
φ̇(9H −

√
˙6X ) + 3φ̈

)}
GBB

+
1

3
e
−
√

2
3
X
(
φ̇(9H −

√
˙6X ) + 3φ̈

)
Gφ

{
e
−
√

2
3
X
Ḃφ̇+

2

3
φ̇2
(
φ̇(9H −

√
˙6X ) + 3φ̈

)}
GBφ

−e−
√

2
3
X
φ̇2KBφ +

1

2
e
−
√

2
3
X
φ̇2Gφφ − e

−
√

2
3
X
Ḃφ̇KBB +

{
4

3
φ̇(9H − 2

√
˙6X )φ̈

− 1√
6
e
−
√

2
3
X
ḂẊ φ̇+ 2

( √
18H2 + 6Ḣ − 3 6HẊ − 2

3
Ẋ 2 −

√
6Ẍ
)}
GB

−1

4
e
−2

√
2
3
XKφ +

1

4
e
−
√

2
3
X

= 0 . (18)

√
Here B(t) = −2e

2
3
X
φ̇2 , and dots denote differentiation with respect to time and the subscripts

refer to the partial differentiations with respect to the corresponding argument. The Friedmann
equations presented in Eqs. (15) and (16) can be written as

H2 =
1

3
(ρDE + ρm) , 2Ḣ + 3H2 = −(pDE + pm) , (19)
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where ρDE and pDE represent an effective dark energy sector with energy density and pressure
respectively:

ρDE =
1

2
Ẋ 2 − 1

4
e
−2

√
2
3
XK − 2

3
φ̇2
(
φ̇(
√

˙
)
G

+
1

2
e
−
√

2
3
X
(
Ḃφ̇G +

φ
φ̇+ 2(Gφ − 2KB)

6X − 9H)− 3φ̈)
, (20)

pDE =
1

2
Ẋ 2 +

1

4
e
−2

2√
2
3
XK +

1

2
e
−
√

2
3
X
(
Ḃφ̇

)
, (21)

ρwith the dark-energy equation of state parameter wDE = pD
D

E

E

GB + φ̇2Gφ −
φ

2

.

2 −
ζ
2

3. Cosmological applications in gravitational scalar-tensor theories
In [3], the authors have considered different functional forms of K and G to study the late-time
evolution of a universe governed by these new theories considering different models. In this
subsection, we will investigated the cosmological application of the new gravitational scalar-
tensor by considering two different models by choosing particular functional form of K and
G.

Model 1: K(φ,B) = φ2 B and G(φ,B) = 0
Here ζ is the corresponding coupling constant. We apply a transformation to any time derivative
function f and H into a redshift z derivative as follows

ḟ = −H(1 + z)H
df

dz
, (22)

f̈ = H(1 + z)2
dH

dz

df

dz
+H2(1 + z)

df

dz
+H2(1 + z)2

d2f

dz2
. (23)

The redshift is given in terms of the scale factor as z = (−1+ a0
a ), with the normalized coefficient

represented by a0 and consider the matter sector to be dust i. e., pm ' 0. In this model, the
Friedmann and the evolution equations Eqs. (15) - (18) and the effective dark-energy energy
density and pressure Eqs. (20) - (21), in the redshift space become:

X ′′
+
( 1

H

dH

dz
− 2

(1 + z)

)
X ′

+
1

2
√

6
ζe
−
√

2
3
X
φ

′2 −

(
1− e−

√
2
3
X
φ
)

2
√

6H2(1 + z)2
e
−
√

2
3
X
φ = 0 , (24)

ζφ′′ + ζ
( 1

H

dH

dz
− 2

(1 + z)

)
φ

′ −
√

6

3
ζφ

′X ′
+

1

2H2(1 + z)2

(
1− e−

√
2
3
X
φ
)

= 0 , (25)

1

6

(
X ′2 +

1

2
ζe
−
√

2
3
X
φ

′2
)

(1 + z)2 − 2(1 + z)

3H

dH

dz
−

(
1− 1

2e
−
√

2
3
X
φ
)

12H2
e
−
√

2
3
X
φ = 0 , (26)

Ωm = 1− 1

6

(
X ′2 +

1

2
ζe
−
√

2
3
X
φ

′2
)

(1 + z)2 − 1

12H2
e
−
√

2
3
X
(

1− 1

2
e
−
√

2
3
X
φ
)
φ , (27)

q =
3Ωm

2
+

1

2

(
X ′2 +

1

2
ζe
−
√

2
3
X
φ

′2
)

(1 + z)2 − 1 , (28)

ωDE =
1

3ΩDE

(
X ′2 +

1

2
ζe
−
√

2
3
X
φ

′2
)

(1 + z)2 − 1 , (29)

ΩDE =
1

6

(
X ′2 +

1

2
ζe
−
√

2
3
X
φ

′2
)

(1 + z)2 +
1

12H2
e
−
√

2
3
X
(

1− 1

2
e
−
√

2
3
X
φ
)
φ . (30)

We solve the whole system of equations for this model numerically and we present the
cosmological evolution for the matter, dark energy density parameters, the dark-energy equation
of state parameters, as well as the evolution of the deceleration in Figs. 1 - 4 for the parameters
choice ζ = 10, Ωm0 =

3

ρ

H
m0

2 ' 0.3 and ΩDE0 =
ρ

3
D

H
E
2
0 ' 0.7.
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Figure 1. The evolution of Ωm and ΩDE versus
the redshift z for model 1.

Figure 2. The evolution of the deceleration
parameter q versus the redshift z for model 1.

Figure 3. The evolution of the dark-energy
equation of state parameter ωDE versus the
redshift z for model 1.

Figure 4. The evolution of ωDE versus the
redshift z for and different values of the model
parameter ζ for model 1.

Model 2: K(φ,B) = ζB and G(φ,B) = ζφ2

2
In this model, the Friedmann and the evolution equations Eqs. (15) - (18) and the effective
dark-energy energy density and pressure Eqs. (20) - (21), in the redshift space become:

X ′′
+
( 1

H

dH

dz
− 2

(1 + z)

)
X ′ − 1√

6
e
−
√

2
3
X
ζ(1− φ)φ

′2 − 1√
6H2(1 + z)2

e
−
√

2
3
X
φ = 0 , (31)

ζφ′′ + ζ
( 1

H

dH

dz
− 2

(1 + z)

)
φ

′ −
√

6

3
ζφ

′X ′
+

1

4H2(1 + z)2

(
1− 2ζH2(1 + z)2φ

′2
)

= 0 ,(32)

−2H(1 + z)
dH

dz
+ 3H2 +

1

2

(
X ′2 − (1− φ)ζe

−
√

2
3
X
φ′2
)
H2(1 + z)2 − 1

4
e
−
√

2
3
X
φ = 0 ,(33)

Ωm = 1− 1

6

(
X ′2 − (1− φ)ζe

−
√

2
3
X
φ

′2
)

(1 + z)2 − 1

12H2
e
−
√

2
3
X
φ , (34)

q =
3Ωm

2
+

1

2

( √
X ‘2 − (1− φ)ζe

− 2
3
X
φ

′2
)

(1 + z)2 − 1 , (35)

ωDE =
1

3ΩDE

(
X ′2 + (1− φ)ζe

−
√

2
3
X
φ

′2
)

(1 + z)2 − 1 , (36)

ΩDE =
1

6

(
X ′2 − (1− φ)ζe

−
√

2
3
X
φ

′2
)

(1 + z)2 +
1

12H2
e
−
√

2
3
X
φ . (37)

We solve the whole system of equations for this model numerically for the parameters choice
ζ = −1, we present the cosmological evolution for the matter, dark energy density parameters,
the dark-energy equation of state parameters and the deceleration parameter in Figs. 5 - 7.
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Figure 5. The evolution of Ωm and ΩDE

versus the redshift z for model 2.

Figure 6. The evolution of the deceleration
parameter q versus the redshift z for model 2.

Figure 7. The evolution of the dark-energy equation of state parameter ωDE versus the redshift
z for model 2.

4. Conclusion
We investigated the cosmological application of the new gravitational scalar-tensor by
considering two different models by choosing particular functional form of K and G. We noticed
from the plots for both models 1 and 2 that the evolution of the matter and dark energy density
parameters Ωm and ΩDE shows the transition from the matter to the dark energy epoch. The
evolution of the deceleration parameter q also show the transition from deceleration (q > 0) to
acceleration (q < 0). The evolution of the dark-energy equation of state parameter ωDE almost
stabilizes in a value very close to the cosmological constant, however it seems to be affected by
both the model we consider and the coupling constant ζ.
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